On-Line Labeled Topic Model
نویسندگان
چکیده
A large number of electronic documents are labeled using human-interpretable annotations. High-efficiency text mining on such data set requires generative model that can flexibly comprehend the significance of observed labels while simultaneously uncovering topics within unlabeled documents. This paper presents a novel and generalized on-line labeled topic model (OLT) tracking the time development of extracted topics through a structured multi-labeled data set. Our topic model has an incrementally updated principle based on time slices in an on-line fashion, and can detect dynamic trending for labeled topics in parallel. Empirical results are presented to demonstrate lower perplexity and high performance of our proposed model when compared with other models.
منابع مشابه
Dirichlet Process with Mixed Random Measures: A Nonparametric Topic Model for Labeled Data
We describe a nonparametric topic model for labeled data. The model uses a mixture of random measures (MRM) as a base distribution of the Dirichlet process (DP) of the HDP framework, so we call it the DPMRM. To model labeled data, we define a DP distributed random measure for each label, and the resulting model generates an unbounded number of topics for each label. We apply DP-MRM on single-la...
متن کاملThe Polylingual Labeled Topic Model
In this paper, we present the Polylingual Labeled Topic Model, a model which combines the characteristics of the existing Polylingual Topic Model and Labeled LDA. The model accounts for multiple languages with separate topic distributions for each language while restricting the permitted topics of a document to a set of predefined labels. We explore the properties of the model in a two-language...
متن کاملLearning Hybrid Models for Image Annotation with Partially Labeled Data
Extensive labeled data for image annotation systems, which learn to assign class labels to image regions, is difficult to obtain. We explore a hybrid model framework for utilizing partially labeled data that integrates a generative topic model for image appearance with discriminative label prediction. We propose three alternative formulations for imposing a spatial smoothness prior on the image...
متن کاملLabeled LDA: A supervised topic model for credit attribution in multi-labeled corpora
A significant portion of the world’s text is tagged by readers on social bookmarking websites. Credit attribution is an inherent problem in these corpora because most pages have multiple tags, but the tags do not always apply with equal specificity across the whole document. Solving the credit attribution problem requires associating each word in a document with the most appropriate tags and vi...
متن کاملیک مدل موضوعی احتمالاتی مبتنی بر روابط محلّی واژگان در پنجرههای همپوشان
A probabilistic topic model assumes that documents are generated through a process involving topics and then tries to reverse this process, given the documents and extract topics. A topic is usually assumed to be a distribution over words. LDA is one of the first and most popular topic models introduced so far. In the document generation process assumed by LDA, each document is a distribution o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016